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if p(z) is a polynomial of degree at most » having no zeros in |z| <1, then
according to a well known result conjectured by Erdds and proved by Lax

max . _,1p'(z)| € (n2)max ,_,;p(z)l. On the other hand, by a result due to
Turan, if p(z) has all its zeros in |z{<1i, then max._|p(z})|=
(n2Ymax,. _,|p(z)|. In this paper we generalize and sharpen these inequalities.
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1. INTRODUCTION AND STATEMENT OF RESULTS

If p(z) is a polynomial of degree at most », then according to a famous
result known as Bernstein’s inequality (for references see [61)
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Here equality holds if and only if p(z) has all its zeros at the origin. In case
p(z) dees not vanish in |z} < 1, it was conjectured by Erdds and proved by
Lax [4] that (1.1) can be replaced by

lzl=1

On the other hand it was proved by Turan { 7] that if p(z) has all its zeros
in |z| €1, then
n

max |p'(z)| =5 max iP(Z
=l =1 e
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Both the above inequalities are sharp and become equalities for p(z)=
A+ pz", (4] =1ul.
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Recently Azis and Dawood [1] improved inequalities (1.2) and (1.3) by
proving

THEOREM A [1, Theorem 27. If p(z) is a polynomial of degree n having
no zeros in |z| <1, then

max |p'(2)] <5 {max | p(z)] — min | p(z)]}. (14)

Izl =1

THeoreM B [1, Theorem 4]. If p(z) is a polynomial of degree n which
has all its zeros in |z| < 1, then

max | p’(z)| =
lzl=1

> (max | p(z)| + min |p(z)]} (15)

NI =

Here we generalize the above theorems by proving the following more
general.

TraeEOREM 1. If p(z) is a polynomial of degree n having no zeros in
|z| <K, K= 1, then

—1)- - (n—s5+1 ‘
lrgllglpwz)lgn(n )1+(Kns 5+ )(Irzrlli?i|p(Z)|—|IZI|1inKlp(Z)|). (16)

THEOREM 2. If p(z) is a polynomial of degree n, having all its zeros in
lz| €K, then

. n n , )
max |7/(2) > (T ) ma 19(2) + mriyy g min PG (1)

if K< 1, and

n
)= ' in |p(z 1.8
Irgllglp( )l (1+K,,)(|I§ilixl|p(z)|+!£ninK|p( )) (1.8)
ifK=1.
Both these inequalities are best possible. In (1.7) equality holds for
p(z)=(z+K)" and in (1.8) for p(z)=z"+ K",

As is immediate to see, Theorem 1 sharpens a result of Govil and
Rahman [3, Theorem 4]. If we take s=1 in Theorem 1, we get the
following result which sharpens a result of Malik [5].
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COROLLARY 1. If p(z) is a polynomial of degree n having no zercs in
Izl <K, K21, then

n
max | p'(z)| € (max | p(z)| — min | p(z}]). {19
zl:l.p( )l 1+Klm:1|p( )| — min {p(z}]) ;

The result is best possible and the equality holds for p(z)={(z + K)".

Theorem A of Aziz and Dawood [1] is a special case of the above
Corollary when K= 1. If we take K=1 in Theorem 2, we get Theorem B
of Aziz and Dawood [1]. In general Theorem 2 sharpens results of
Govil {2] and Malik [5].

Remark. 1In all the above inequalities (1.6), (1.7). (1.8), and (1.9), it i
not possible to replace the expression min ., _ ¢ | p{z)] by min_, | p(z
the polynomial p(z) = (z + K)" shows for inequalities (1.6}, (1.7}, and {1
and p{z)=z"+ K" shows for the inequality (1.8).
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2. LEMMAS
We need the following lemmas.

LeMMA 1. If p(z) is a polynomial of degree n having no zeros in |zi < K.
K=1, then

o)

K[ p(e) <lgW(e”).  0<

[ )

<2 (2.1}

Here and elsewhere q(z) stands for z"{ p(1/Z}}.

This lemma is in fact implicit in the proof of Theorem 4 of Govil and
Rahman [37; however, for the sake of completeness we give here a brief
outline of the proof. For this, first let us suppose that all the zeros of p(z)

lic on |z] = K> 1. Then all the zeros of P,(z)= p(Kz) lie on iz{=1 and 30
do the zeros of Q,(z)=z"{P,(1/2)} = K"q(z/K). For every 4 with |1 > 1,
the polynomial P,(z)—/AQ(z) has all its zeros on |z{ =1; hence by the

Gauss—Lucas Theorem all the zeros of the sth derivative P{z)—20'(=}
lie in |z| < 1. This implies that

K1 pU(Kz)| = | PY(=) < 108'(:) = K7 ig (= K))
for |z| = L. In particular we have

| p (K% < K" #|q¥(e?)], 0<8<2nm. {2

[
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The polynomial p*)(Kz) is a polynomial of degree » — s having all its zeros
in |z| < 1; hence on considering the quotient

2 PUKZ) I (Kz)

in |z| =1 one gets easily as a consequence of the maximum modulus
principle that

127 (KR Y < | P (Kz)| for |z| =1,
which gives
K"75|p(5)(€i9)| < |p(s)(K2€i9)|: 0<0<2n. (23)

Combining this with (2.2) we get (2.1) for polynomials having all their
zeros on |[z]=K=>= 1.

If the zeros of p(z) lie in |z| = K= 1 but not necessarily on |z| = K, then
for every real y, the polynomial p(z)+e7Q,(z/K) has all its zeros on
|zl =K=1 and applying (2.1), which has been proved for polynomials
having all the zeros on |z| =K=>1, to the polynomial p(z)+e7Q,(z/K),
Lemma 1 will follow.

LEMMA 2. If p(z) is a polynomial of degree n having no zeros in |z| < K,
K> 1, and q(z)=z"{ p(1/Z)}, then for |z| = /K,

g9z =mn(n—1)---(n—s+ 1)]z|""%, (2.4)
where m=min,. _ «| p(z)|.

Proof of Lemma 2. Because the polynomial p(z) has no zeros in |z| < K,
K> 1, the polynomial g(z)==z"{p(1/Z)} has all its zeros in |z] <1/K<1.
Therefore for every x, |x| <1, the polynomial ¢(z)—amz" has all its
zeros in |z| < 1/K, which implies by the Gauss—Lucas theorem that
q¥(z)—amn(n—1)---(n—s+1)z"~* has all its zeros in |z| <1/K and
from which (2.4) will follow.

Lemma 3. If p(z) is a polynomial of degree n having all its zeros in
|z| €K, K= 1, then

max | p'(z)| =

max 1+K"r{IaX|P( z)l.

The result is best possible with equality for p(z)==z"+ K".
The above result is due to Govil [2].
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3. PrROOFS OF THEOREMS

Proof of Theorem 1. Let p(z) be polynomxal of degree » having ail its
nyf 1
L J

zeros in |z <1. Then ¢(z)=z"{p(1.Z} has no zeros in |z{ < |: hence by
Lemma !
lg"(e?) <[pP(e”),  0<O<2m (3.1
If p(z) is a polynomial of degree n, [ p} =max _,|p{z)|, then by

Rouchb s theorem for every 4 with |4} > 1, the polynomial p{z}— 4| pi z*
has all its zeros in |z| <1; hence applying (3.1) to the polynomial

7

plz)— 4 p: " we conclude that if g(z) =z"{ p(1;Z)}, then

o~
=
[
G
R
.
_—
"
[\

[P+ 1g" ) < lipl a(n—1) -+

if p(z) is a polynomial of degree » having no zeros in iz| < K, K2 i, and
if m=min_ _,|p(z)] then for every z with ixj<! the polynomiai
p(z)—xm has no zeros in |z| <K, K= 1. This result is clear if p{z) has a
zero on |z| = K for then m =0 and hence p(z)—am = p("} In case p{c} has
no zeros on ‘z| = K, then, for every x with | <1, we have [p(z}| >z m
on |z| = K and the result follows from Rouche’s theorem. Thus in anv case
p(z)—am has no zeros in |zj < K, K> 1, and therefore applying Lemma |
to the polynomial p(z)— am, we get

(%)
[¥%)

S

K5 pie®) < |1g"' ey —an(n — 1) --- (n— 5+ 1} me™" —5), (3

Choosing argument of x suitably, making 2| — I, and noting that by
Lemma 2, |¢"(e®) =mn(n—1)---(n—s+ 1}, we get from (3.3)

K| pie®) < qPie®) —mn(n—1)---(n—s+ 1},
which is clearly equivalent to

19 (") > K*[ p')(e”)] +mn(n—1) - (
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Now combining (3.4) with (3.2}, Theorem 1 foliows.
Proof of Theorem 2. First we prove (1.7). Since the poiynomial piz) has

all its zeros in |z] < K< 1, the polynomial g{z}==z"{p(1/Z)} has no zeros
in |zj < 1/K, 1/K> 1; hence applying Theorem 1, with s =1, to g{z} we get

' (N =



34 N. K. GOVIL

which gives that on |z| =1,

nkK , nkK )
|np(z) —zp’ (4)I<1——m [p(z)] ——— min |[g(z)|

4+ Kiz=1 1+ Kpz1=1:1
"R max | (=) - —5— min | p(z)
=— Z)-——— mi 2,
1+ Kjz=1 P (1+K)K" 121=« Pzl
which implies that for |z] =1,
nk nkK
) —p' () < —_ . (3.
1P = 1P <y g max 1)~ g min PG (39)

Now choosing z, such that | p(zy)| = max,_, | p(z)|, we get from (3.5)

|p'(z0)l>(L>max|p() e min |p(2),

1+ K/ 121=1 (1+K)K":
from which (1.7) follows.

To prove (1.8), note that if m=min, _.|p(z)|, then for every « with
|2] <1, the polynomial p(z)+ am has all its zeros in |z] < K, K= 1. This is
clear if p(z) has a zero on |z| = K, because in that case m =0 and therefore
p(z)+am=p(z). In case p(z) has not zero on |z|] =K, then, for every «
with |2| <1, we have |p(z)| >m|«]| on |z] =K and on applying Rouché’s
theorem the result will follow. Thus p(z)+ xm has all its zeros in |z]| < K|
K>1 and hence, applying Lemma 3 to p(z) + am, we get

max [ /()| > 75 max | p(z) + oml (36)

If we choose z, such that | p(z,)| =max, _, | p(z)], (3.6) in particular gives

max | p'(z)| >

n i .
2= 1 1+ K" (1 p(zo) + amij). (3.7)

Now choosing « so that the right hand side of (3.5) is

1+Kn (Ip(‘O)l + lem)

and making |a| — 1, we get (1.8).
The proof of Theorem 2 is thus complete.
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