Some Inequalities for Derivatives of Polynomials

N. K. Govil
Department of Algebra, Combinatorics, and Analysis, Division of Mathematics, Auburn Ciniversity, Auburn. Alabama 36849. U.S.A.

Communicated by P. Borwein
Received November 29. 1989; revised August 6. 1990

Abstract

If $p(z)$ is a polynomial of degree at most n having no zeros in $|z|<1$, then according to a well known result conjectured by Erdoss and proved by Lax $\max _{z:=1}\left|p^{\prime}(z)\right| \leqslant(n i 2) \max _{z_{i}=1 ; p(z) \mid \text {. On the other hand, by a result due to }}$ Turan, if $p(z)$ has all its zeros in $|z| \leqslant i$, then max. $=-1\left|p^{\prime}(z)\right| \geqslant$ $(n 2) \max _{1:=1}|p(z)|$. In this paper we generalize and sharpen these inequaities. E 1991 Academic Press. Inc.

1. Introduction and Statement of Results

If $p(z)$ is a polynomial of degree at most n, then according to a famous result known as Bernstein's inequality (for references see [6])

$$
\begin{equation*}
\max _{i z \mid=1}\left|p^{\prime}(z)\right| \leqslant n \max _{\mid z^{\prime}=1}|p(z)| \tag{1.1}
\end{equation*}
$$

Here equality holds if and only if $p(z)$ has all its zeros at the origin. In case $p(z)$ does not vanish in $|z|<1$, it was conjectured by Erdős and proved by Lax [4] that (1.1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{2} \max _{!=1=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

On the other hand it was proved by Turan [7] that if $p(z)$ has all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\max _{i=1=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{2} \max _{: z 1=1}|p(z)| \tag{1.3}
\end{equation*}
$$

Both the above inequalities are sharp and become equalities for $p(z)=$ $i+\mu z^{n},|\lambda|=|\mu|$.

Recently Azis and Dawood [1] improved inequalities (1.2) and (1.3) by proving

Theorem A [1, Theorem 2]. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{2}\left\{\max _{|=|=1}|p(z)|-\min _{|=|=1}|p(z)|\right\} . \tag{1.4}
\end{equation*}
$$

Theorem B [1, Theorem 4]. If $p(z)$ is a polynomial of degree n which has all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{2}\left\{\max _{|z|=1}|p(z)|+\min _{|z|=1}|p(z)|\right\} . \tag{1.5}
\end{equation*}
$$

Here we generalize the above theorems by proving the following more general.

Theorem 1. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<K, K \geqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{(s)}(z)\right| \leqslant \frac{n(n-1) \cdots(n-s+1)}{1+K^{s}}\left(\max _{|z|=1}|p(z)|-\min _{|z|=K}|p(z)|\right) . \tag{1.6}
\end{equation*}
$$

Theorem 2. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leqslant K$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant\left(\frac{n}{1+K}\right) \max _{\mid=1=1}|p(z)|+\frac{n}{K^{n-1}(1+K)} \min _{i z \mid=K}|p(z)| \tag{1.7}
\end{equation*}
$$

if $K \leqslant 1$, and

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{\left(1+K^{n}\right)}\left(\max _{\mid z i=1}|p(z)|+\min _{\mid z=K}|p(z)|\right) \tag{1.8}
\end{equation*}
$$

if $K \geqslant 1$.
Both these inequalities are best possible. In (1.7) equality holds for $p(z)=(z+K)^{n}$ and in (1.8) for $p(z)=z^{n}+K^{n}$.

As is immediate to see, Theorem 1 sharpens a result of Govil and Rahman [3, Theorem 4]. If we take $s=1$ in Theorem 1, we get the following result which sharpens a result of Malik [5].

Corollary 1. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<K, K \geqslant 1$, then

$$
\begin{equation*}
\max _{z!=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{1+K}\left(\max _{\mid=1=1}|p(z)|-\min _{==K}|p(z)|\right) . \tag{1.9}
\end{equation*}
$$

The result is best possible and the equality holds for $p(z)=(z+K)^{n}$.
Theorem A of Aziz and Dawood [1] is a special case of the above Corollary when $K=1$. If we take $K=1$ in Theorem 2, we get Theorem B of Aziz and Dawood [1]. In general Theorem 2 sharpens results of Govil [2] and Malik [5].

Remark. In all the above inequalities (1.6), (1.7), (1.8), and (1.9), it is not possible to replace the expression $\min _{|z|=K}|p(z)|$ by $\min _{|z|=1}|p(z)|$, as the polynomial $p(z)=(z+K)^{n}$ shows for inequalities (1.6), (1.7), and (1.9) and $p(z)=z^{n}+K^{n}$ shows for the inequality (1.8).

2. Lemmas

We need the following lemmas.

Lemma 1. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<K$. $K \geqslant 1$, then

$$
\begin{equation*}
K^{s}\left|p^{(s)}\left(e^{i \theta}\right)\right| \leqslant\left|q^{(s)}\left(e^{i \theta}\right)\right| . \quad 0 \leqslant \theta<2 \pi \tag{2.1}
\end{equation*}
$$

Here and elsewhere $q(z)$ stands for $z^{n}\{\overline{p(1, \bar{z})}\}$.
This lemma is in fact implicit in the proof of Theorem 4 of Govil and Rahman [3]; however, for the sake of completeness we give here a bref outline of the proof. For this, first let us suppose that all the zeros of $p(z)$ lie on $|z|=K \geqslant 1$. Then all the zeros of $P_{1}(z)=p(K z)$ lie on $|z|=1$ and so do the zeros of $Q_{1}(z)=z^{n}\left\{\overline{P_{1}(1 / \bar{z})}\right\}=K^{\prime \prime} q(z i K)$. For every i with $|\lambda|>1$. the polynomial $P_{1}(z)-\lambda Q_{\mathrm{i}}(z)$ has all its zeros on $|z|=1$; bence by the Gauss-Lucas Theorem all the zeros of the s th derivative $P_{i}^{(s)}(z)-\hat{\lambda} Q_{1}^{(s)}(z)$ lie in $|z| \leqslant 1$. This implies that

$$
K^{s}\left|p^{(s)}(K z)\right|=\left|P_{1}^{(s)}(z)\right| \leqslant\left|Q_{1}^{(s)}(z)\right|=K^{n-s}\left|q^{(s)}\left(z_{i}^{\prime} K\right)\right|
$$

for $|z| \geqslant 1$. In particular we have

$$
\begin{equation*}
\left|p^{(5)}\left(K^{2} e^{i \theta}\right)\right| \leqslant K^{n-2 s}\left|q^{(s)}\left(e^{i \theta}\right)\right| ; \quad 0 \leqslant \theta<2 \pi \tag{2.2}
\end{equation*}
$$

The polynomial $p^{(s)}(K z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \leqslant 1$; hence on considering the quotient

$$
z^{n-s}\left\{\overline{p^{(s)}\left(K_{/} / \bar{z}\right)}\right\} / p^{(s)}(K z)
$$

in $|z| \geqslant 1$ one gets easily as a consequence of the maximum modulus principle that

$$
\left|z^{n-s}\left\{\overline{p^{(s)}(K / \bar{z})}\right\}\right| \leqslant\left|p^{(s)}(K z)\right| \quad \text { for } \quad|z| \geqslant 1
$$

which gives

$$
\begin{equation*}
K^{n-s}\left|p^{(s)}\left(e^{i \theta}\right)\right| \leqslant\left|p^{(s)}\left(K^{2} e^{i \theta}\right)\right|, \quad 0 \leqslant \theta<2 \pi \tag{2.3}
\end{equation*}
$$

Combining this with (2.2) we get (2.1) for polynomials having all their zeros on $|z|=K \geqslant 1$.

If the zeros of $p(z)$ lie in $|z| \geqslant K \geqslant 1$ but not necessarily on $|z|=K$, then for every real γ, the polynomial $p(z)+e^{i z} Q_{1}(z / K)$ has all its zeros on $|z|=K \geqslant 1$ and applying (2.1), which has been proved for polynomials having all the zeros on $|z|=K \geqslant 1$, to the polynomial $p(z)+e^{i z} Q_{1}(z / K)$, Lemma 1 will follow.

Lemma 2. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<K$, $K \geqslant 1$, and $q(z)=z^{n}\{\overline{p(1 / \bar{z})}\}$, then for $|z| \geqslant 1 / K$,

$$
\begin{equation*}
\left|q^{(s)}(z)\right| \geqslant m n(n-1) \cdots(n-s+1)|z|^{n-s}, \tag{2.4}
\end{equation*}
$$

where $m=\min _{\mid=1=K}|p(z)|$.
Proof of Lemma 2. Because the polynomial $p(z)$ has no zeros in $|z|<K$, $K \geqslant 1$, the polynomial $q(z)=z^{n}\{\overline{p(1 / \bar{z})}\}$ has all its zeros in $|z| \leqslant 1 / K \leqslant 1$. Therefore for every $\alpha,|\alpha|<1$, the polynomial $q(z)-\alpha m z^{n}$ has all its zeros in $|z| \leqslant 1 / K$, which implies by the Gauss-Lucas theorem that $q^{(s)}(z)-\alpha m n(n-1) \cdots(n-s+1) z^{n-s}$ has all its zeros in $|z| \leqslant 1 / K$ and from which (2.4) will follow.

Lemma 3. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leqslant K, K \geqslant 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{1+K^{n}} \max _{:=1=1}|p(z)| .
$$

The result is best possible with equality for $p(z)=z^{n}+K^{n}$.
The above result is due to Govil [2].

3. Proofs of Theorems

Proof of Theorem 1. Let $p(z)$ be a polynomial of degree n having all its zeros in $\mid z \leqslant 1$. Then $q(z)=z^{n}\{\overline{p(1)}\}$ has no zeros in $|z|<1$: hence by Lemma 1.

$$
\begin{equation*}
\left|q^{(s)}\left(e^{i \theta}\right)!\leqslant\left|p^{(s)}\left(e^{i \theta}\right)\right|, \quad 0 \leqslant \theta<2 \pi\right. \tag{3.1}
\end{equation*}
$$

If $p(z)$ is a polynomial of degree $n,|i p|:=\max _{=1=1}|p(z)|$, then by Rouchés theorem for every i with $|\lambda|>1$, the polynomial $p(z)-i\|p\|_{i}^{i}$ has all its zeros in $|z|<1$; hence applying (3.1) to the polynomial $p(z)-i: p: z^{n}$ we conclude that if $q(z)=z^{n}\{\overline{p(1 ; \bar{z})}\}$, then

$$
\begin{equation*}
\left|p^{(s)}\left(e^{i \theta}\right)\right|+\left|q^{(s)}\left(e^{i \theta}\right)\right| \leqslant|p|^{i} n(n-1) \cdots(n-s+1) . \tag{3.2}
\end{equation*}
$$

If $p(z)$ is a polynomial of degree n having no zeros in : $z \mid<K, K \geqslant 1$, and if $m=\min _{z=K}|p(z)|$ then for every α with $|x|<1$ the polynomiai $p(z)-x m$ has no zeros in $|z|<K, K \geqslant 1$. This result is clear if $p(z)$ has a zero on $|z|=K$ for then $m=0$ and hence $p(z)-\alpha m=p(z)$. In case $p(z)$ has no zeros on ${ }^{\prime} z \mid=K$, then, for every x with $\mid \alpha<1$, we have $|p(z)|>\mid x_{i} m$ on $|z|=K$ and the result follows from Rouchés theorem. Thus in any case $p(z)-x m$ has no zeros in $|z|<K, K \geqslant 1$, and therefore applying Lemma ! to the polynomial $p(z)-\alpha m$, we get

$$
\begin{equation*}
K^{s}\left|p^{(s)}\left(e^{i \theta}\right)\right| \leqslant \mid q^{(s)}\left(e^{i \theta}\right)-\bar{x} n(n-1) \cdots(n-s+1) m e^{i: n-s) \theta_{i}} \tag{3.3}
\end{equation*}
$$

Choosing argument of x suitably, making $|x| \rightarrow 1$, and noting that by Lemma 2, $\left|q^{(s)}\left(e^{i \theta}\right)\right| \geqslant m n(n-1) \cdots(n-s+1)$, we get from (3.3)

$$
K^{s}\left|p^{(s)}\left(e^{i \theta}\right)\right| \leqslant, q^{(s)}\left(e^{i \theta}\right) \mid-m n(n-1) \cdots(n-s+1)
$$

which is clearly equivalent to

$$
\begin{equation*}
\left|q^{(s)}\left(e^{i \theta}\right)\right| \geqslant K^{s}\left|p^{(s)}\left(e^{i \theta}\right)\right|+m n(n-1) \cdots(n-s+1) \tag{3.4}
\end{equation*}
$$

Now combining (3.4) with (3.2), Theorem 1 follows.
Proof of Theorem 2. First we prove (1.7). Since the polynomial $p(z)$ has all its zeros in $|z| \leqslant K \leqslant 1$, the polynomial $q(z)=z^{n}\{p(1 / \bar{z})\}$ has no zeros in $|z|<1: K, 1: K \geqslant 1$; hence applying Theorem 1 , with $s=1$, to $q(z)$ we get

$$
\left|q^{\prime}(z)\right|=\frac{n}{(1+1 ; k)}\left(\max _{\mid=1=1}|q(z)|-\min _{\mid=1=1 K}|q(z)|\right),
$$

which gives that on $|z|=1$,

$$
\begin{aligned}
\left|n p(z)-z p^{\prime}(z)\right| & \leqslant \frac{n K}{1+K} \max _{|z|=1}|p(z)|-\frac{n K}{1+K} \min _{|z|=1: K}|q(z)| \\
& =\frac{n K}{1+K} \max _{|z|=1}|p(z)|-\frac{n K}{(1+K) K^{n}} \min _{|z|=K}|p(z)|
\end{aligned}
$$

which implies that for $|z|=1$,

$$
\begin{equation*}
n|p(z)|-\left|p^{\prime}(z)\right| \leqslant \frac{n K}{1+K} \max _{i z \mid=1}|p(z)|-\frac{n K}{(1+K) K^{n}} \min _{\mid z=K}|p(z)| . \tag{3.5}
\end{equation*}
$$

Now choosing z_{0} such that $\left|p\left(z_{0}\right)\right|=\max _{|=|=1}|p(z)|$, we get from (3.5)

$$
\left|p^{\prime}\left(z_{0}\right)\right| \geqslant\left(\frac{n}{1+K}\right) \max _{|z|=1}|p(z)|+\frac{n K}{(1+K) K^{n}} \min _{\mid z=K}|p(z)|,
$$

from which (1.7) follows.
To prove (1.8), note that if $m=\min _{|z|=K}|p(z)|$, then for every α with $|x|<1$, the polynomial $p(z)+\alpha m$ has all its zeros in $|z| \leqslant K, K \geqslant 1$. This is clear if $p(z)$ has a zero on $|z|=K$, because in that case $m=0$ and therefore $p(z)+\alpha m=p(z)$. In case $p(z)$ has not zero on $|z|=K$, then, for every x with $|x|<1$, we have $|p(z)|>m|x|$ on $|z|=K$ and on applying Rouche's theorem the result will follow. Thus $p(z)+\alpha m$ has all its zeros in $|z| \leqslant K$, $K \geqslant 1$ and hence, applying Lemma 3 to $p(z)+\alpha m$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{1+K^{n}} \max _{|z|=1}|p(z)+\alpha m| . \tag{3.6}
\end{equation*}
$$

If we choose z_{0} such that $\left|p\left(z_{0}\right)\right|=\max _{|z|=1}|p(z)|,(3.6)$ in particular gives

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geqslant \frac{n}{1+K^{n}}\left(\left|p\left(z_{0}\right)+\alpha m\right|\right) . \tag{3.7}
\end{equation*}
$$

Now choosing x so that the right hand side of (3.5) is

$$
\frac{n}{1+K^{n}}\left(\left|p\left(z_{0}\right)\right|+|\alpha| m\right)
$$

and making $|\alpha| \rightarrow 1$, we get (1.8).
The proof of Theorem 2 is thus complete.

References

1. A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative. J. Approx. Theory 53 (1988), 155-162.
2. N. K. Govil, On the derivative of a polynomia!, Proc. Amer. Math. Soc. 41 (1973). 543-546.
3. N. K. Govil avd Q. I. Rahmav, Functions of exponentiai type not vanishing in a hafplane and related polynomials. Trans. Amer. Math. Soc. 137 (1969), 501-517.
4. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50 (1944). 509-513.
5. M. A. Malik. On the derivative of a polynomial, J. London Math. Soc. '2) 1 (1969). 57-60.
6. A. C. Shaffrer. Inequalities of A. Markoff and S. Bernstein for polynomials and reiated functions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
7. P. Tlran. Uber die Abeleitung von Polynomen. Compositio Math. 7 (1939), 89-95.
